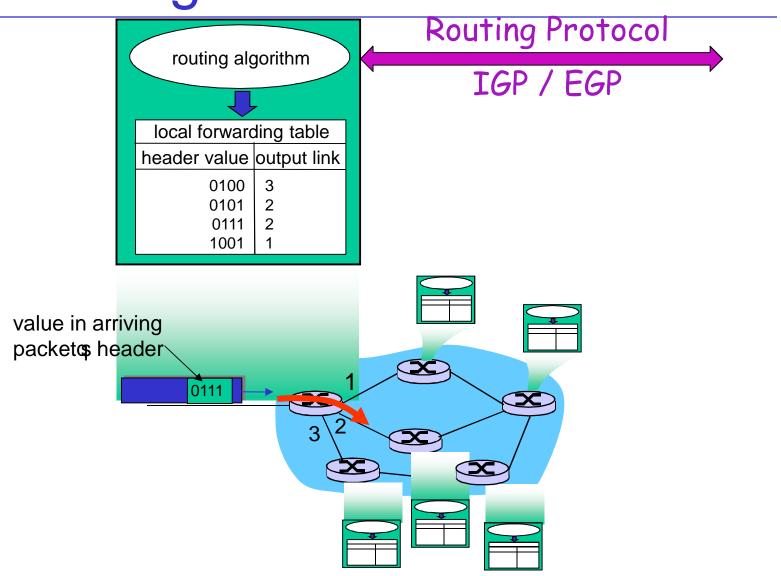

Routage Dynamique

SI-F AfNOG 2014


Caractéristiques désirées don routage dynamique

- Détecter et s'adapter automatiquement aux changements de topologie
- Fournir un routage optimisé
- Evolutivité (Scalability)
- Robustesse
- Simplicité
- Convergence rapide
- Un certain contrôle sur les choix des routes
 - ex., quels liens préfère t'on utiliser

Les routeurs parlent en protocoles de routage

Interactions entre routage et forwarding

Routage IP. Construction du chemin

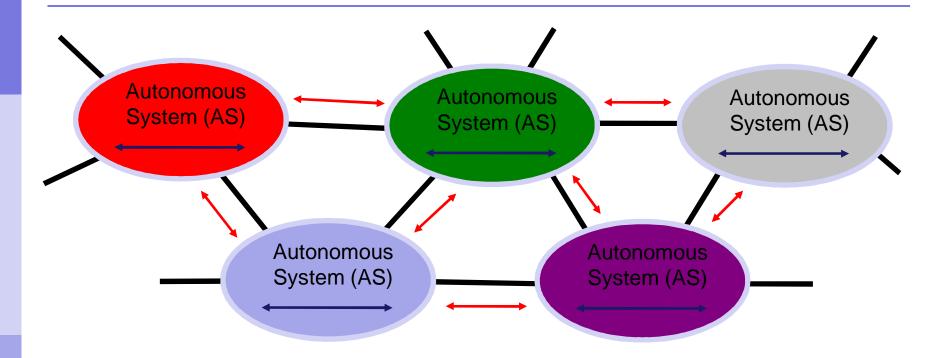
- Le chemin derive d'information recue par le protocol de routage
- Plusieurs chemins alternatifs peuvent exister
 - Le meilleur next hop est stocké dans la table de forwarding
- Les décisions sont mises a jour périodiquement ou lorsque la topologie change (event driven)
- Les décisions sont basées sur:
 - topologie, politiques and métriques (nombre de sauts, filtrage, délais, bande passante, etc.)

Forwarding IP

- Le routeur décide de l'interface sur laquelle envoyer un paquet
- La table de forwarding est construite par le processus de routage
- Décisions de Forwarding:
 - Adresse destination
 - Classe de service (fair queuing, precedence, others)
 - Besoins/exigences locaux (packet filtering)

Convergence . pourquoi estce important?

- La convergence c'est lorsque tous les routeurs ont une vue stable du réseau
- Lorsque le réseau n'a pas convergé il y période de non-fonctionnement (downtime)
 - Les paquets n'arrivent pas où ils devraient arriver
 - Blackholes (les paquets "disparaissent")
 - Boucles de routage (les packets vont et viennent entre les mêmes équipements)
 - Se produit lors d'un changement d'état de routeur ou de liens


Routage Internet: Hierarchie

- L'Internet se compose de Systèmes Autonomes (AS)
- Chaque système autonome est une entité administrative qui
 - Utilise un *Interior Gateway Protocol* (IGP) afin de determiner les routes à l'intérieur de l'AS
 - Utilise un Exterior Gateway Protocol (EGP) afin d'interagir avec les autres AS

IGPs et EGPs

- Les IGPs fournissent l'information de routage pour intérieur du réseau (LAN, liens du backbone, etc)
- Les EGPs concernent les autres reseaux hors de votre AS
- Les EGPs considèrent les autres AS comme une boîte noire
 - Il ne connaissent pas les LAN et liens du backbone des autres AS

Routage Internet: Architecture

Autonomous System: Un ensemble de réseaux IP et de routeurs regis par la même authorité administrative

——— Interior Routing Protocol

Exterior Routing Protocol

Interior Gateway Protocols

- 4 IGPs bien connus aujourd'hui
 - RIP
 - EIGRP
 - OSPF
 - IS-IS

Exterior Gateway Protocols

- Un seul protocole standard de fait:
 - BGP

3 aspects du routage: #1

- Acquisition d'information à propos des réseaux IP accessible via un internet
 - Configuration de routes statiques
 - Protocoles de routage dynamique (e.g., BGP4, OSPF, RIP, IS-IS)
 - chaque mechanisme/protocole construit une Routing Information Base (RIB)
- "Construction d'une carte"

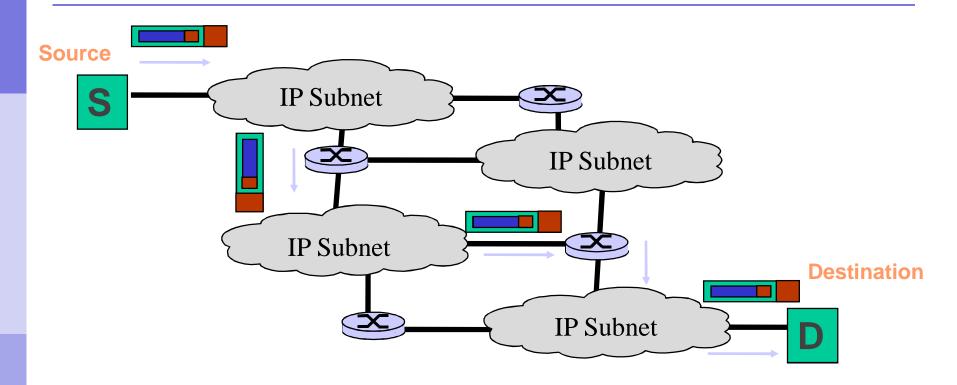
3 aspects du routage: #2

- Construction d'une table de Forwarding
 - Synthèse en une table unique de toutes les Routing Information Bases (RIBs)
 - L'information concernant un préfixe destination peut être acquise de multiples façons
 - une précédence est définie parmi les RIBs pour résoudre les conflits sur un préfixe
 - Cette table est appelée Forwarding Information Base (FIB)
- "Utilisation de la carte pour planifier un trajet"
 - En fait, pour planifier un trajet vers toutes les destinations connues

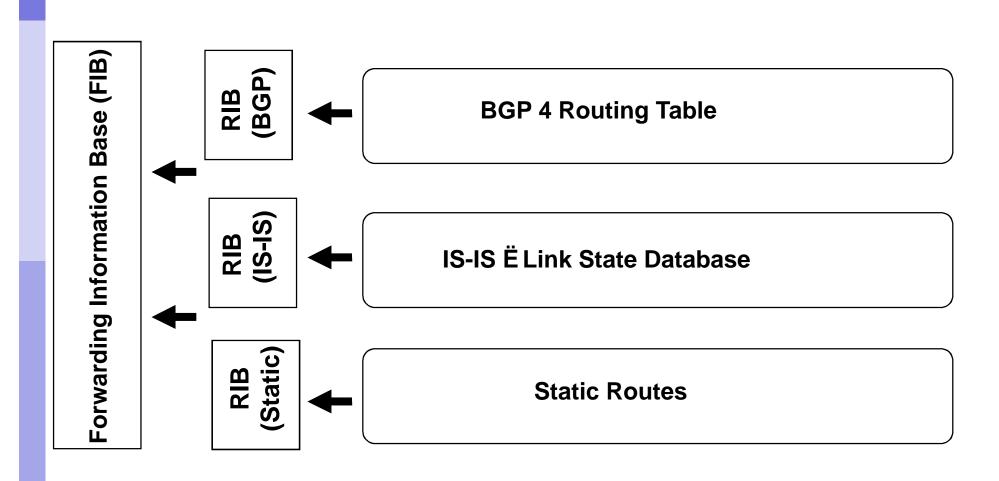
3 aspects du routage: #3

- Utilisation de la table de Forwarding pour transmettre des paquets
 - Selection du next-hop et de l'interface de sortie
 - A chaque saut, chaque router prend une décision de façon indépendante
- "Utiliser le trajet planifier pour choisir une direction a chaque intersection"

Routing versus Forwarding


 Routing = contruire la carte et donner des directions

 Forwarding = déplacer des paquets entre interfaces selon les "directions"



IP Forwarding

- Décisions de Forwarding:
 - Adresse destination
 - Classe de service (fair queuing, precedence, autres)
 - Exigences locales (packet filtering)

Les tables de routage nourrissent la table de forwarding

Construction done RIB

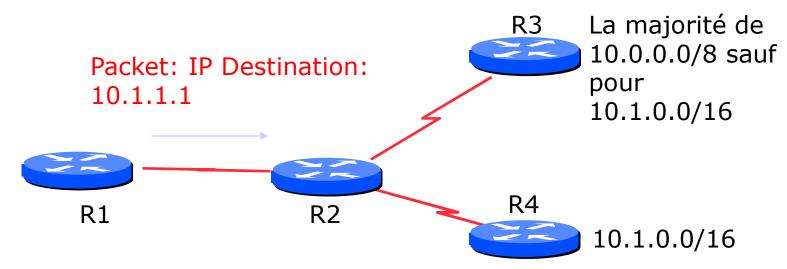
- Chaque protocole de routage construit sa propre Routing Information Base (RIB)
- Chaque protocole traite le « coût » des routes à sa façon.

Construction de la FIB

- Il n'y a qu'UNE table de forwarding!
- Un algorithme permet de choisir un next-hop vers chaque destination IP connue par n'importe quel protocole
 - L'ensembles des destinations IP présentes toutes les RIB est collecté
 - Si une destination IP particulière est présente dans une seule RIB, cette RIB détermine le next hop pour cette destination

Construction de la FIB

- Choix d'entrées pour la FIB, cont...
 - Si une destination IP particulière est présente dans plusieurs RIBs, la precedence associée a chaque RIB est utilisée pour determiner le next hop pour cette destination
 - Ce procédé choisit normalement un seul next-hop vers une destination donnée
- Il n'y a pas de standard pour cela; c'est une décision d'implémentation (qui dépend du vendeur de l'équipement)

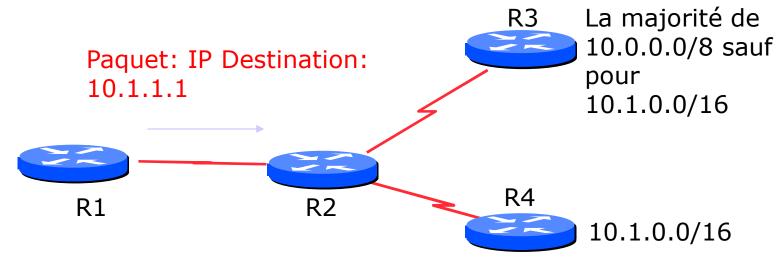

Contenu de la FIB

- Sous-réseau IP et masque (ou longueur) des destinations
- Adresse IP du "next hop" pour ce sousréseau IP
- Identifiant de l'interface du sous-réseau associée au next hop
- Optionnel: métrique de coût associée à cette entrée dans la table de forwarding

Contenu de la FIB

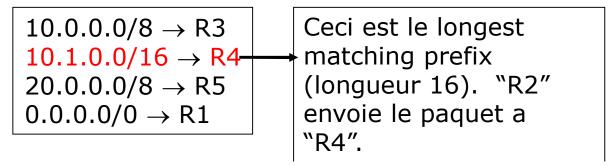
- Route par défaut
 - Où envoyer les paquets s'il n'y a pas d'entrée pour la destination dans la table
 - La plupart des machines ont une seule route par défaut
 - Elle est souvent appelée la « default gateway »
 - **0.0.0.0/0**
 - correspond pour toutes les destinations possibles, mais n'est souvent pas la plus longe correspondance (longest match, en Anglais)

IP route lookup: Longest match routing



Basé sur l'adresse IP destination

forwarding table de R2


$$10.0.0.0/8 \rightarrow R3$$

 $10.1.0.0/16 \rightarrow R4$
 $20.0.0.0/8 \rightarrow R5$
 $0.0.0.0/0 \rightarrow R1$

IP route lookup: Longest match routing

Basé sur l'adresse IP destination

forwarding table de R2

IP route lookup: Longest match routing

- La correspondance la plus longue gagne toujours!!
 - Beaucoup de gens oublient ceci, même des ingénieurs d'ISP expérimentés
- La route par défaut est 0.0.0.0/0
 - Suit la logique du longest match. Utilise le même algorithme
 - Correspond à toutes les destinations. C'est toujours la correspondance la plus courte et donc la route de dernier recours.
 - L'équivalent IPv6 est 0:0:0:0:0:0:0:0/0 ou "::/0"

Vecteur de distance versus état des liens

- Vecteur de distance
 - Accumule une métrique à chaque saut traversé par les messages du protocole
- Etat des liens
 - Construit une base de donnée avec la topologie du réseau
 - Calcule le meilleur chemin du nœud courant vers toutes les destinations sur base de la topologie

Protocole à vecteur de distance

- Chaque routeur annonce a ses voisins la "distance" vers les différents sousréseaux IP
- Chaque routeur calcule sa table des meilleurs next-hop sur base du coût minimum déterminé a partir
 - Du coût reçu de ses voisins vers la destination
 - Et du coût vers ces voisins

Pourquoi pas RIP?

- RIP est un protocole à vecteur de distance
 - Ecoute les routes de ses voisins
 - Installe toutes les routes dans la table de routage
 - Le coût le plus bas gagne
 - Annonce toutes les routes de la table
 - Très simple, très idiot
- La seule métrique est le nombre de sauts
- Un réseau comprend max 16 sauts (pas assez grand)
- Convergence lente (boucles de routage)
- Pas très robuste

EIGRP

- "Enhanced Interior Gateway Routing Protocol"
- Successeur de IGRP qui est classfull
 - IGRP développé par Cisco au milieu des années 1980s pour dépasser les problèmes de scalabilité de RIP
- Protocole de routage propriétaire Cisco
- Protocole à vecteur de distance
 - Très bon contrôle des métriques
- Est encore utilisé dans certains réseaux d'entreprise?
 - Multi-protocole (supporte plus qu'IP)
 - Bonne scalabilité et convergence rapide
 - Supporte l'équilibrage de charge le long de chemins de coût inégal

Protocoles à état des liens

Protocoles à état des liens

- Chaque router envoi via "multicast" l'état de ses liens directs et sousréseaux IP à tous les routeurs du réseau
- Chaque routeur construit une vue complète de la topologie pour l'entièreté du réseau basée sur les mises a jours des états des liens
- Chaque routeur calcule la table routage avec ses next-hop sur base de cette vue de la topologie

Protocoles à état des liens

- Vise à minimiser les temps de convergence et éliminer les boucles de forwarding lorsque le protocole a convergé. Le coût de cela est une plus grande charge en terme de messages de routage, de mémoire et de CPU
- Permet l'utilisation de plusieurs métriques/coûts

IS-IS

- "Intermediate System to Intermediate System"
- Sélectionné en 1987 par ANSI comme protocole de routage OSI intradomaine (CLNP – connectionless network protocol)
 - Basé sur le travail de DEC pour DECnet/OSI (DECnet Phase V)
- Extensions pour IP développées in 1988
 - NSFnet a déployé son IGP basé sur une version précoce du draft IS-IS-IP

IS-IS (suite)

- Adopté comme proposition de standard ISO en 1989
 - Integrated IS-IS supporte IP et CLNP
- Débat entre les avantages d'IS-IS et OSPF
 - La plupart des grands ISPs ont choisit IS-IS au lieu d'OSPF pour un nombre de raisons que nous allons évoquer plus loin
- 1994-aujourd'hui: deployé par plusieurs très grands ISPs
- Le développement continue à l'IETF en parallèle avec OSPF

OSPF

- Open Shortest Path First
 - "Open" signifie que c'est du domaine public
 - Utilise l'algorithme "Shortest Path First" parfois appelé "algorithme de Dijkstra"
- IETF Working Group formé en 1988 pour proposer un IGP pour IP
- OSPF v1 publié en 1989 RFC1131
- OSPF v2 publié en 1991 RFC1247
- Les développements continuent durant les années 90 jusqu'à aujourd'hui
 - OSPFv3 basé sur OSPFv2 dédié au support d'IPv6

Fonctionnement don protocole de routage à état des liens

- Chaque routeur possède une base de données. C'est une carte de toute la topologie
 - Liens
 - Leur état (+ coût)
- Chaque routeur a la même information
- Tous les routeurs calculent le meilleur chemin vers chaque destination
- Tous les changements d'états des liens sont propagés à tous les routeurs du réseau
 - "Progagation globale d'information locale"

Résumé

- Maintenant nous savons:
 - La différence entre routes statiques, RIP, OSPF and IS-IS.
 - La différence entre Routage et Forwarding
 - Qu'un protocole de routage dynamique Routing doit être utilisé dans tous réseau d'ISP
 - Les routes statiques ne sont pas adaptées (don't scale)
 - RIP n'est pas adapté (doesn't scale) et est périmé

Routage dynamique

SI-F AfNOG 2014